Animal models are still indispensable in some research areas. They provide the only way of modelling the effects of a new medicine on an entire organism, with all its organs and the complex interactions that take place in the body. Long-term effects can often only be demonstrated in animal models, and that is also why authorities responsible for licensing drugs still insist on them as part of the approval process.
On the other hand, we know that animal models are not always transferable to humans. To reduce animal testing and improve translatability of results to humans, we are intensively researching various alternative methods.
One of these methods is to model human physiology outside the living organism, for example on a chip, in a lab, or to use computer models to test the behaviour of a medicine in the body. Using such methods, Roche has reduced the number of animals in experimental use by 50% over the past 14 years.
Roche is dedicated to following the guiding principles of the
Roche has developed three-dimensional cell systems to observe new molecules and their effects and side effects on human cells outside the body, at an early stage.
Multiple organs can be placed on one chip about the size of a USB stick and are interconnected to model the dynamics of a human organism.
This approach should allow researchers to replace a great deal of animal testing in the early preclinical development stage or future major advances.
Laboratory experimentation and animal testing give us information on the effect of a new medicine and its distribution in the body. Computer models enable us to transfer those results to humans using complex simulations, allowing us to predict dosages and effects before direct human testing begins. In the context of these models we also use real world data. It is difficult to predict effects in humans since every patient has different features of a disease. If we can build in specific characteristics of different patient populations into a test model, we will be better able to anticipate the effects of a medicine in the human body. Currently, animal data is still required as a reference for computer models. Once real world data sources are more established, we will be able to reduce animal experiments even further.
No toxicity is observed in organoids (above)
Organoid toxicity and cell death (above)
With the help of patient-derived organoids we are able to model important aspects of a human organ outside a living organism. In this case, we mimicked critical parts of the gut and predicted adverse events of potential medicines in the human body. This promising approach minimises the number of animal experiments and studies while making preclinical drug development programmes more precise and predictive for clinical trials. The pictures show an untreated organoid (top left) where no toxicity is observed, as evidenced by a lack of signal from a fluorescent probe for cell death (top right). In contrast, the two pictures at the bottom depict organoid toxicity and cell death (shown by the green signal on the right) based on drug intervention.
Organoids have the potential to revolutionise the way we discover and develop medicines. With the
This website contains information on products which is targeted to a wide range of audiences and could contain product details or information otherwise not accessible or valid in your country. Please be aware that we do not take any responsibility for accessing such information which may not comply with any legal process, regulation, registration or usage in the country of your origin.